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Introduction 

Ground motions in close proximity to the causative fault of an earthquake can be significantly 

affected by the propagation of rupture. In particular, when the rupture and slip direction relative 

to a site coincide and a significant portion of the fault ruptures towards the site, the ground 

motion can exhibit the effects of Forward-Directivity (FD) (Somerville et al. 1997). FD ground 

motions are distinctly different from ordinary ground motions. FD ground motions are short in 

duration and consist of one or more pulses of motions. These pulses can result in higher seismic 

demands and must be considered for design or retrofit of a structure that is in the proximity of an 

active fault.  

Modern seismic design philosophy is based in the concept of Performance Based Design 

(PBD), whereas the design of a structure is directed towards meeting selected target behavior 

levels (e.g. “Fully Operational” to “Near Collapsed”) within established risk levels. These 

objectives are usually achieved by characterizing structural behavior in terms of a deformation 

measure that has a good correlation with the damage measures targeted by PBD. Within this 

design philosophy, seismic hazard is usually quantified through Probabilistic Seismic Hazard 

Analysis (PSHA), and the resulting hazard is convolved with a structural response function in 

what is commonly known as Probabilistic Seismic Demand Analysis (PSDA) to obtain 

performance measures associated with quantified risk levels. PSDA methodologies have been 

studied extensively for ordinary ground motions; however, the current understanding regarding 

FD ground motions has yet to be integrated into PSDA. 

This report presents the results of research performed at Washington State University over the 

last two years towards the goal of developing a methodology for the inclusion of the effects of 

near-fault forward-directivity into the determination of seismic demand of a structure. The report 

first presents a technical background on the characteristics of forward directivity ground motions 

and the implementation of performance based design. The methodology developed for time-

domain PSDA of forward directivity ground motions is then presented. Finally, the results of the 

proposed PSDA methodology are applied on a sample MDOF system to exemplify the 

importance of considering forward-directivity ground motions in design. 
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Background 

Forward-Directivity 

In the near-fault region, ground motions at a particular site are significantly influenced by the 

rupture mechanism and the rupture direction relative to the site, as well as the permanent ground 

displacement at the site resulting from tectonic movement. Depending on the first two factors, 

ground motions in the near-fault zone can exhibit the dynamic consequences of “forward-

directivity,” “neutral-directivity,” or “backward-directivity.” Depending on the last factor, 

ground motions close to the rupture surface may contain a significant permanent static 

displacement, which is termed “fling-step” (Bray and Rodriguez-Marek 2004). The estimation of 

ground motions for a project site close to an active fault should account for these special aspects 

of near-fault ground motions. The "fling-step" usually induces only limited inertial demands on 

structures due to the long-period nature of the static displacement. On the other hand, ground 

motions that are influenced by forward-directivity effects can be very damaging to structures. 

Forward-directivity effects are seen when the rupture direction is aligned with the direction of 

slip, and the rupture front moves towards a given site (Bray and Rodriguez-Marek 2004). These 

conditions occur readily in strike-slip earthquakes when the rupture propagates horizontally 

towards a given site. Forward-directivity conditions are also met for dip-slip faulting at sites that 

are located close to the surface projection of the fault. Note that two of the larger urban centers 

of Washington State, Seattle and Tacoma, are traversed by faults that can potentially generate 

forward-directivity effects. This implies that a large inventory of civil and transportation 

infrastructure (e.g., bridges, retaining walls, port facilities) are vulnerable to forward-directivity 

ground motions (FDGMs). 

Forward-directivity ground motions typically contain very few long period, high intensity 

ground motion pulses that are best observed in velocity time histories. Due to the radiation 

pattern of the fault, these pulses are typically aligned with the fault normal direction. However, 

strong pulses may be present in the fault parallel direction as well (Bray and Rodriguez-Marek 

2004). These motions typically have a short duration with amplitudes larger than those of generic 

motions, and with a strong preferential fault-normal orientation. The differences between 

FDGMs and "ordinary" ground motions recorded away from the fault can be summed up as: 
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a) The velocity-time histories of FDGMs consist of a few (two to six) long-period pulses. 

b) FDGMs have higher spectral accelerations in a period band centered on the period of the 

forward-directivity pulse. This period ranges from 0.6 s to upwards of 5 s (Bray and 

Rodriguez-Marek 2004). 

c) FDGMs have larger peak ground velocities (PGV), in particular in the fault-normal 

direction.  

d) FDGMs have shorter durations. 

 

With the exception of item (d), all other particularities of FDGMs imply that they will 

produce higher demands on structures or geotechnical systems. Currently there are two 

approaches used to deal with forward directivity effects. In the spectral approach, rupture 

directivity effects are generally taken into account by modifications to the elastic acceleration 

response spectrum at 5% damping (Somerville et al. 1997, Somerville 2003, Spudich and Chiou 

2008). This approach lends itself readily to inclusion into Probabilistic Seismic Hazard Analyses 

(e.g., see Abrahamson 2000). In the time-domain approach, FD effects are characterized by 

parameters obtained from time domain representations of the ground motion (e.g. pulse period 

and pulse amplitude, see Mavroeidis and Papageorgiou 2003, Bray and Rodriguez-Marek 2004, 

Baker 2007). This is because traditional response spectrum representations of ground motions do 

not adequately represent the demand for a high rate of energy absorption presented by near-fault 

pulses. More specifically, when the high intensity levels of these motions drive structures into 

the nonlinear range, the linear-elastic assumption underlying the response spectrum concept is 

invalidated (Somerville 2003). There is considerable argument over which one of these 

approaches is correct. For example, Malhotra (1999) and Chopra and Chintanapakdee (2001) 

indicate that modifications to the linear and nonlinear design spectra are enough to capture 

structural response to FDGMs. On the other hand, other researchers have indicated that time-

domain analyses are better suited for pulse-type motions and that structural performance is 

significantly influenced by the characteristics of the velocity-time history (e.g. Anderson and 

Bertero 1987, Hall et al. 1995, Makris 1997, Alavi and Krawinkler 2000, Sasani and Bertero 

2000, Mylonakis and Reinhorn 2001, and Zhang and Iwan 2002). Our research indicates that 

taken as a group, forward-directivity ground motions are more damaging for the same level of 
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spectral accelerations than non-forward directivity ground motions. There is, however, no 

argument in the fact that FD effects must be considered in design of structures and geotechnical 

systems; and that time-history analysis for nonlinear structures is necessary even if it is only as a 

design check. 

Although FDGMs pose a significant threat to structures, this threat is not equal for all 

structures. For example, coincidence of the structure and pulse period leads to amplification of 

structural response. However, the period of the structure and the pulse period can vary 

significantly. The FDGM pulse period is proportional to the earthquake magnitude, lengthening 

as the earthquake magnitude increases. As a result, damage due to smaller magnitude 

earthquakes can be more significant for short period structures than damage due to larger 

magnitude earthquakes, since the near-fault pulse period is closer to the fundamental period of 

the structure in the smaller magnitude earthquake. This contradicts conventional engineering 

intuition that directly correlates damage potential with earthquake magnitude, thus highlighting 

the need for a unique way to accurately assess the potential for structural damage due to FDGMs. 

The near-fault pulse can impose an additional damage variable on structures: large residual 

deformations. Although consisting only of a few cycles, the pulses can impose large inelastic 

drift on structures, resulting in significant permanent deformations. Not only are conventional 

damage indices such as maximum displacement and energy absorbed important for assessing the 

response of structures, alternatives including residual displacement are necessary as well 

(Priestley, 2003). 

Performance Based Earthquake Engineering 

The second generation of Performance-Based Earthquake Engineering assessment and design 

procedures (PBEE-2) are postulated based on probability-based performance assessment tools 

(Cornell et al. 2002). PBEE-2 is expressed in terms of a triple integral: 

|][|]|[]|[]|[)( ∫∫∫= IMdIMEDPdPEDPDMdPDMDVPDV λλ  (1) 

where DV, DM, EDP, and IM are decision variable, damage measure, Engineering Demand 

Parameters, and Intensity Measure, respectively. P[X|Y] is the probability density of X 

conditioned on knowledge of Y, and dλ[IM] is mean annual frequency of occurrence of the IM. 
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Probabilistic evaluation of EDPs in terms of Intensity Measures is known as Probabilistic 

Seismic Demand Analysis and is a prerequisite for the solution of Equation 1. PSDA is built 

upon the more traditional PSHA and couples the probabilistic description of future ground 

motions from PSHA, with their random dynamic effects on a structure. Results of PSDA provide 

the annual likelihood of different Performance Levels for given hazard (e.g. by defining 

performance in terms of structural response). PSDA is embodied in the following equation 

(ATC-58 2004): 

∫ =≥= |)(|]|[)( ydyIMxEDPPx IMEDP λλ
 

      (2) 

Where )(xEDPλ  is the mean annual frequency of EDP exceeding the value x, P[EDP ≥ x|IM = y] 

is the probability of EDP exceeding x given that IM equals y, dλIM(y) is the mean annual 

frequency of occurrence of IM equal to y, and )( yIMλ  is mean annual frequency of exceedance of 

the IM (e.g., the ground motion hazard) which is obtained from conventional PSHA. 

In traditional PSDA analyses, the structural response, as expressed in the equation 

P[EDP ≥ x|IM = y], is obtained from a regression analyses on structural response to a series of 

pre-selected ground motion time histories. This approach has been extensively discussed by 

Baker (2007). An alternative method of design is to perform PSHA analyses to quantify the 

ground motion hazard and then perform time domain analyses for selected ground motions using 

criteria based on the equal hazard spectra along with deaggregation results. Yet another 

alternative arises for ground motions that are characterized by simple time histories, such as 

FDGM. In these cases, it is possible to perform time domain analyses within the PBD integral 

shown in Equation 2. This alternative approach is developed in this work. 

Problem Statement 

The previous discussion highlights knowledge of FDGMs. Despite this thorough 

understanding of the phenomena, designers are still unclear as to how the effects of FDGMs 

must be included into the prediction of seismic hazard. Abrahamson (2000) has shown how to 

incorporate forward directivity into PSHA for the determination of elastic response spectra. A 

similar methodology does not exist when these motions are characterized in the time domain. 

Moreover, there are no guidelines for the selection of time histories for design when time 
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histories are not fully characterized by the elastic response spectra (e.g., FDGMs). Time-history 

analyses are necessary for the analysis of non-linear systems subject to strong ground motion 

(e.g. structures taken to large loads or the response of a liquefiable soil to seismic ground 

motion). 

Research Objectives 

The goal of this study is to obtain explicit estimates of seismic demand for structures 

subjected to near-fault through a methodology that permits time-domain Probabilistic Seismic 

Demand Analysis. Probabilistic methods are utilized to include the effects of pulse-like ground 

motions on Intensity Measures and Engineering Demand Parameters. The novelty of the 

proposed approach lies on the use of equivalent pulses and time-domain analyses within the 

PSDA methodology. The outcome of the proposed methodology is a seismic hazard curve for an 

arbitrary EDP that includes the effects of forward-directivity. This overall goal can be divided 

into the following objectives: 

a) Develop an equivalent pulse model to represent the characteristics of pulse-like ground 

motions based on an empirical analysis of the ground motion database. 

b) Utilize the equivalent pulse model to evaluate EDPs through Incremental Dynamic 

Analysis (IDA) for near-fault ground motions with dominant forward-directivity pulse. 

c) Incorporate the use of equivalent pulses into Probabilistic Seismic Demand Analysis for 

the selected EDPs. 

d) Demonstrate the applicability of the proposed methodology on a selected structure and 

quantify the difference in hazard estimates resulting from the use of the proposed 

methodology as compared with state-of-the-art methods. 

Method of Analysis 

The proposed methodology is developed herein. In order to better present the methodology, a 

structure is first selected such that the proposed methodology can be explained with a tangible 

example. A more extensive development of the proposed methodology is presented in the Ph.D. 

thesis of Sehhati (2008). The development herein is simplified for clarity of presentation, yet an 

attempt to make it self-sufficient is also made. 



 10

Selection of a structural system and structural analysis methodology 

For simplicity and in order to maintain a non-specific approach, a generic building was 

considered in the development of the model. The building is a seven-story building designed as 

regular structure, both in plant and in height, with fundamental period of exactly 1.0 second. The 

structure was designed to have a base shear coefficient (defined as the base shear that causes 

yielding in the structure divided by the total weight of the structure) of 0.07. The seismic 

resisting system in the weak direction consists of four moment resisting steel frames. Each frame 

has three 20 feet long by 12.5 feet high spans. Details of the building in the strong direction are 

irrelevant in this study because the structures were only loaded in their weak direction. To reduce 

computational efforts, the structures were simplified by shear building models. 

A MATLAB program was written for conducting 2D nonlinear dynamic analyses of the 

frames. The step-by-step integration method with the Wilson-Theta modification (Chopra 1995) 

was used for time integration and the Modified Newton-Raphson Method (Chopra 1995) was 

used to iterate within each time step. Steel material nonlinearity was modeled by an elastoplastic 

kinematic hardening relationship, having identical properties in tension and compression. The 

frames were assumed to have a viscous damping ratio equal to 5%. To enhance analysis 

accuracy, each story was modeled in SAP2000 and subjected to pushover analysis to get a force-

displacement curve for that story. Plastic hinge properties of each member were modeled with a 

bilinear non-degrading moment-curvature model with a range of strain hardening from 2.5% to 

3.5%. These models were obtained from the commercial Xtract software and were assigned to 

the SAP model at top and bottom of columns. The member hardening behavior in each story 

resulted in a story hardening stiffness range of 10% to 12% in form of force-displacement 

curves. The force-displacement curves obtained from SAP pushover analyses for each story were 

used by the MATLAB program for the dynamic analyses. 

P-Δ effects, which can have a significant role in the response of near-fault structures with an 

excessive drift, were approximated by adding geometric stiffness to the first order stiffness 

matrix (see Sehhati 2008 for details). The geometric stiffness was formed assuming that axial 

forces remain constant for the entire duration of the ground motion. Geometric stiffness was 

calculated based on the shape functions of each column with the two ends fixed against rotation 

and found to be equal to 1.2P/L where P is axial load and L is length of column. 
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Engineering Demand Parameters such as drift ratio, ductility demand, and story shear forces 

were monitored. However, the maximum story displacement ductility demand (MSDD) was 

selected to describe the inelastic response of the structures. The MSDD becomes greater than 1.0 

when the relative displacement in any story is larger than the story yield displacement. The 

maximum inter-story ductility demand (MIDD) was defined as the maximum value of the 

MSDD over all the stories and is used heretofore as the EDP to characterize structural response. 

Statistical Models to Correlate EDPs to IMs  

The building described above was subject to ground motions recorded within 20 km from a 

fault (see Sehhati 2008 for details on the ground motions used). The near-fault ground motions 

were divided in two groups, one group consisting of ground motions with pulses as identified by 

the procedure of Baker (2007), and the other group for ground motions without pulses. A power-

law relationship between MIDD and Sa(T1) was assumed. The parameters of the relationship 

were obtained using a Maximum Likelihood regression assuming a normal distribution for 

MIDD. For near-fault motions without pulses the resulting relationship is given by: 
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where xo = 0.1, x1 = 0.57, σmax = 1.98, and σmin = 0.34. The range of applicability of Equation 3a 

is 0 < Sa(T1) ≤ 1.9g. It was assume that MIDD has a normal distribution with mean given by 

Equation 3a and standard deviation given by Equation 3b. However, the normal distribution is 

truncated to prevent physically unrealizable MIDD values (e.g. MIDD<1). Alternative 

distributions to the normal distribution were attempted but they all resulted in poor fits to the 
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residuals for high values of MIDD. Similarly, another power relationship between Sa(T1) and 

MIDD for the near-fault ground motion with pulses dataset was computed: 

71.0
1 )1.0)((6.241 −+= TSMIDD a       (4) 

with σ given by Equation 3b with xo = 0.1, x1 = 1.24, σmax = 8.54, and σmin = 2.11. The 

applicability range for Equation 4 is 0 < Sa(T1) ≤ 1.9g. As for non-pulse ground motions, it was 

assume that MIDD has a normal distribution with the mean value given by Equation 4 and the 

standard deviation given by Equation 3b with the parameters indicated above. Figure 1 compares 

predicted EDPs from Equation 3 and 4 with EDPs computed for each of the ground motions in 

the data set. Observe the clear difference in behavior for pulse-like and non-pulse-like ground 

motions. Pulse like ground motions elicit a higher structural response for the same level of 

spectral acceleration. Moreover, the spread for pulse-like ground motions is higher (e.g. higher 

standard deviation) than for non-pulse-like ground motions, indicating that Sa(T1) is not a good 

predictor of structural response for pulse-like ground motions. 

Development of an equivalent pulse model for forward-directivity ground motions 

Wavelets are basis functions that can be used to divide a given function or continuous-time 

signal into different frequency components. Mavroeidis and Papageorgiou (2003) modified the 

Gabor (1946) wavelet by replacing the Gaussian envelope of the Gabor wavelet with another 

symmetric bell-shaped function that possesses a simpler analytical expression. The velocity time 

history of the resulting wavelet is expressed as: 
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where, A controls the amplitude of the wavelet, fp is the frequency of the amplitude-modulated 

harmonic (or the prevailing frequency of the signal), ν is the phase of the amplitude-modulated 

harmonic (i.e., ν = 0 and ν = ±π/2 define symmetric and antisymmetric signals, respectively), γ is 

a parameter that defines the oscillatory character (i.e., zero crossings) of the signal, and to 

V(t) = 
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specifies the location in time of the envelope’s peak. An illustrative example of this pulse is 

shown in Figure 2. In this study, only ν = 0 was considered in order to achieve an equivalent 

pulse with a lower number of parameters. Hence, the parameters needed to define the Gabor 

wavelet pulse are A, fp, and γ. 

A set of recorded forward directivity ground motions was assembled and is presented in detail 

in Sehhati (2008, see also the Appendix). Each of these pulse-like ground motions was 

associated with a pulse period (using the procedures of Baker 2007 and Bray and Rodriguez-

Marek 2004) and the amplitude of the dominant pulse. For each recorded FD ground motion, non 

linear structural analyses were conducted and the response in terms of MIDD was compared to 

the structural response obtained using the simplified pulses as input motions. The results can be 

summarized as follows: 

• If the pulse period is in the neighborhood of the structural period, then the response of the 

structure is controlled by the forward directivity pulse and, more significantly, the 

simplified pulse representations using the pulse parameters obtained directly from the 

ground motions render similar structural response to the recorded ground motions. For 

the particular structure in consideration, it was determined that the pulse controls 

response when 0.5 s ≤ Tp/Ts ≤ 2.5, where Tp and Ts are the pulse period and the structural 

period, respectively. 

• The pulse amplitude of the Gabor pulses that best mimics structural response is on 

average 73% of the peak ground velocity. 

 

The relationship between pulse period and magnitude is obtained from Baker (2007): 

wp MTLn 02.178.5)( +−=  with  55.0ln =
pTσ  (6) 

where pT  is the median predicted value of pulse period in seconds as a function of magnitude, 

Mw; and 
pTlnσ  is the standard deviation in natural log units of the pulse period. This Equation 

implicitly assumes that the pulse period has a log normal distribution. Similar relationships were 

proposed by Bray and Rodriguez-Marek (2004) and Mavroeidis and Papageorgiou (2003), 

among others.  
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The pulse amplitude Ap can be calculated using predictive relationships for PGV. The model 

of Bray and Rodriguez-Marek (2004) is used to estimate PGV at distances shorter than 20 km 

(the limit of applicability of that model): 

)7(57.034.051.4)( 22 +−+= rupw rLnMPGVLn   with  49.0=PGVσ    (7) 

where PGV  is in units of cm/sec, rrup is the closest distance to the site in km, and σPGV is the 

standard deviation of PGV in log units. It is assumed that PGV is lognormally distributed. At 

distances larger than 60 km, the PGV is estimated using the Abrahamson and Silva NGA 

relationship (2007). For intermediate distances (e.g. between 20 km and 60 km), a cosine taper 

function is used to transit smoothly from the near-source PGV correlation (Bray and Rodriguez-

Marek 2004) to the NGA PGV correlation (Abrahamson and Silva 2007): 

)().1()(.)( NGAMarekRodriguez PGVLnPGVLnPGVLn φφ −+= −    (8) 

where ))
2
1

40
(cos(

2
1

2
1

−+= rupr
πφ . Figure 3 shows an example of the resulting PGV function. The 

standard deviation of PGV is similarly defined. The pulse period and pulse amplitude were 

determined to be positively correlated, but their residual values are uncorrelated hence the two 

variables can be treated as statistically independent random variables. 

Incremental Dynamic Analyses for simplified pulses 

Given that Gabor wavelet pulses can reasonably represent near-fault ground motions when 

their pulse period is in the neighborhood of the fundamental period of the structure 

(0.5≤Tpulse/Tstructure≤2.5 for the structures studied herein), multiple runs can be used to predict the 

inelastic response of the structure for pulses with all possible amplitudes and periods in this 

range; thus the inelastic response of structures can be predicted for a range of forward-directivity 

pulses with realistic amplitudes and frequencies (Figure 4). The short period region of the 

response surface in Figure 4 is less smooth than the response at other period ranges, indicating 

that there are no clearly defined trends in the response of the structure in this region. This likely 

happens because the contribution of higher modes becomes predominant. 
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Proposed PSDA methodology: A Time-Domain PSDA methodology 

Similar to the procedure set forth by Tothong et al. (2007), the proposed methodology 

separates the mean annual frequency of exceedance (MAF) of an Engineering Demand 

Parameter for a given Intensity Measure, λEDP(x), into two parts; near-source (NS) and non-near-

source (non-NS). This is expressed as: 

)()()( ,, xxx NSEDPNSnonEDPEDP λλλ += −      (9) 

The MAF of the EDP for the near-source case (λEDP,NS) includes hazard resulting from pulse- 

and non-pulse-like ground motions and can be separated into two parts: the near-source hazard 

from pulse-like ground motion events, pulseNSEDP &,λ , and the near-source hazard due to non–

pulse-like records, pulsenoNSEDP −&,λ :  

)()()( &,&,, xxx pulsenoNSEDPpulseNSEDPNSEDP −+= λλλ   (10) 

For near-source ground motion with forward-directivity pulses, two different cases are 

considered: 

1. When forward-directivity pulses are not dominant: in this case, forward-directivity pulses 

do not control response of the structure, hence, Sa(T1) is used as an Intensity Measure. 

These cases are treated similarly to near-source events without pulse.  

2. When forward-directivity pulses are dominant: in this case, forward-directivity pulses 

control structural response and simplified pulses are used to predict the EDP using time-

domain analyses.  

For the MDOF structure used as an example herein, when the ratio of the pulse period and 

structural period are within 0.5 and 2.5 (e.g., 0.5 ≤ Tpulse/Tstructure ≤ 2.5), forward-directivity 

pulses are dominant and control the behavior of the structures. For these cases, Figure 4 can be 

sued to predict the EDP for possible forward-directivity pulses. Note that the bounds for which 

the pulse controls (Tlower = 0.5 Tp and Tupper = 2.5 Tp for the MDOFs studied herein) may be 

structure dependent. Nonetheless, the concept that the response of the structure is controlled by 
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the pulse when the pulse period is in the neighborhood of the structural period is assumed to be 

generally applicable to all structures. 

In summary, the EDP hazard at a site can be divided into 

)()(

)()()(

dominantnot  is pulse,&,dominant is pulse,&,

&,,

xx

xxx

pulseNSEDPpulseNSEDP

pulsenoNSEDPNSnonEDPEDP
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λλλ

+

++= −−
  (11) 

For non-near source (λEDP,non-NS), and near source cases with no pulse or in which the pulse is not 

dominant (λEDP, NS&no-pulse and λEDP,NS&pulse, pulse is not dominant), λEDP is computed from Equation 2, 

hence statistical correlations between the EDP (MIDD) and the IM (spectral acceleration) are 

used (e.g. Equations 3 and 4). In these cases, the intensity measure hazard (λSa) has to be 

deaggregated into the same four scenarios considered for the EDP, hence:  
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Each of these hazard components is discussed in the following subsections. 

Hazard for non-near source scenarios [λEDP,non-NS(x)] 

Whenever the closest distance to the ruptured fault for a given scenario is greater than 60 km, 

that scenario is considered to be a non-near source scenario. The 60 km threshold distance is 

based on Abrahamson’s (2000) model. For these cases, the mean annual frequency of the 

Engineering Demand Parameter exceeding x (for a given IM, which for this case is Sa(T1)) for 

non-near-source events, )(, xNSNonEDP −λ , is given by: 

∫ −− =≥= |)(|]|)[()( ,, ydySxEDPPx NSNonSaNSNonEDP a
λλ    (13) 

where ]|)[( ySxEDPP a =≥  is the conditional probability of EDP exceeding x given that 

Sa(T1) = y. In this step, EDP and IM are correlated through Equation 3. )(yd
aSλ is the mean 

annual frequency of occurrence of Sa(T1) = y. )(yd
aSλ is equal to )2/()2/( Δ+−Δ− yy

aa SS λλ , 
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where Δ is a selected Intensity Measure interval and )(, yNSNonSa −λ  is the mean annual 

frequency of elastic-pseudo spectral acceleration  exceeding y and is obtained through 

conventional PSHA. For non-near-source ground motion events (e.g. for distances greater than 

60 km) )(, yNSNonSa −λ is given by: 

( )[ ] ( )
( ) rupwrupwRM

faults
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drdmrmf

rmyGrIy

i
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i
w
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#
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=
− −= νλ

      (14) 

where vi is the mean annual rate of occurrence of earthquakes on fault i above a minimum 

threshold magnitude, Mw is the moment magnitude, and Rrup is the closest distance from the site 

to the rupture plane. The function INS(rrup) is a flag that is set to one when rrup < 60 km, and set to 

0 when rrup > 60 km. The term ),(, rupwRM rmf i
rup

i  is the joint probability density function (PDF) of 

Mw and Rrup on fault i. The term, ),|(
,| rupwRMSa

rmyG i
rup

i
w

, represents the Complementary 

Cumulative Gaussian probability density function (CCDF) of the log normally distributed 

random variable Sa, which is defined as:  

)
ln
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,|ln

,|ln

,|
rupwa

rupwa
i
rup

i
w

rmS

rmS
rupwRMSa

y
rmyG

σ

μ−
Φ−=     (15) 

where (...)Φ  is the standard Gaussian CDF, and 
rupwa rmS ,|lnμ and 

rupwa rmS ,|lnσ are the conditional 

mean and standard deviation of the natural logarithm of Sa, respectively, as obtained from a 

ground motion prediction model  (e.g. Abrahamson and Silva 2007), and y is a test value for Sa . 

Note that in random variables are denoted by uppercase characters while lowercase characters 

represent realizations of those random variables. Equation 14 sums the hazard over all faults 

affecting a site. Without loss of generality, the presentation from here on assumes that a single 

fault contributes to hazard and the subscript i is ignored. 

A note on the implementation of Equation 14 is in order here. The definition of the joint 

probability density function ),(
, rupwRM

rmf
rup  

requires the definition of the probability density 
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function for closest distance to the fault (Rrup) which in turn is a function of magnitude through 

the dependence of rupture length on magnitude. An alternative approach is to iterate through all 

possible scenarios for magnitude and rupture length in which case Equation 14 becomes (for a 

single fault): 

( ) ( )[ ] ( )
( ) ( ) ( ) χ

υλ
χ

ddrldmrlmfmfmf

rmyGrIy

wwwRLwM

m rl rupwRMSarupNSNSNonSa

w

w rupw

...,.

,|1
,|,

Χ

− ∫ ∫ ∫ −=
   (16) 

where RL is the rupture length and X is the location of the ruptured segment within the given 

fault. Note that rrup is a function of χ and rl, but the functionality is omitted from the notation of 

Equation 16 for simplicity. The probability density function for magnitude, fMw(mw) can be 

obtained by geological or seismological analyses and is usually defined for a given fault 

(McGuire 2004). The probability density function for rupture length, fRL(mw) is given by 

empirical relationships such as Wells and Coppersmith (1984). The probability density function 

for the location of rupture (fΧ) is assumed to be uniform, implying equal probability of 

occurrence of rupture within the fault. This is a simplification that may not apply for faults with 

strong segmentation. Equation 16 is easier to implement numerically than Equation 14 and lends 

itself to implementation of forward-directivity as discussed in subsequent sections. 

The implementation of Equation 16 is carried through the discretization of its integrals. The 

predictor variables for magnitude (Mw), rupture length (RL) and location of the rupture length (X) 

are first discretized into bins and then Equation 4-15 can be rewritten as: 

( ) ( )[ ] ( ) ( ) ( ) ( )∑∑∑ Χ− −=
j k m

rupw
m rl

mkRLjMrupjRMSarupNSNSNonSa PrlPmPrmyGrIy
χ

χυλ ,|1
,|,   (17) 

where mj, rlk, and χm are the center point of the Mw, RL, and X bins, respectively; j, k, and m are 

summation indices; PM(mj) denotes the probability that the magnitude falls within the j 

magnitude bin; PRL(rlk) denotes the probability that the rupture length falls within the k rupture 

length bin; and PX(χm) denotes the probability that the location of the rupture falls within the mth 

bin for location of rupture. These discrete probabilities are obtained from the corresponding 

probability density functions in Equation 16. 
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Near source scenarios when no pulses are present [λEDP,NS&No-Pulse(x)] 

The approach for near-source ground motions without pulses is identical to that for non-near 

source ground motions, except that the IM motion hazard has to consider only the appropriate 

scenarios (near-source scenarios with no pulses). Whenever the closest distance to the fault was 

less than 60 km, that scenario was considered to be a near source scenario. The mean annual 

frequency of Engineering Demand Parameter exceeding x for near-source no-pulse-like events, 

)(&, xPulseNoNSEDP −λ , is given by Equation 2 but using λSa,NS&No-Pulse as the intensity measure. The 

hazard curve for )(
&,

y
PulseNoNSaS −

λ and is given by: 

dhdxdrldmhfrlmfmfmfSrpulseP

ZrmyGrIy

wHwXwRLwMrup

rupwPulseNoRMSarupm rl x h NSPulseNoNSSa

w
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θ

νλ

−

= −− ∫ ∫ ∫ ∫
(18) 

where H is the location of the hypocenter defined between the interval [0,1] where h=0 and h=1 

imply either end of the ruptured fault, and the variables Z, S, and θ are parameterizations used to 

characterize forward-directivity ground motions (Somerville et al. 1997). S, and θ were 

previously defined, and Z is defined as ξcos(θ), where ξ is the fraction of the fault rupturing 

towards a site (ξ = S/RL). All other variables were previously defined. The probability of pulse 

occurrence P(pulse) is the probability of occurrence of a pulse and is given by Iervolino and 

Cornell (2008). For simplicity, in this work the location of the hypocenter is assumed to be at 

either end of the ruptured fault and rupture direction is then assumed to progress towards the 

opposite end of the fault. This implies that fH is a discrete function that takes values of 0.5 for 

h=0 or h=1 (e.g. the hypocenter is located at either end of the fault). In Equation 18, rrup is a 

function of rupture length (rl) and the location of the ruptured segment (χ). The variables S and θ 

are a function of the location of the hypocenter (h), the location of the fault segment (χ) and the 

rupture length. The term PulseNoRMS rupwa
G −,,|  is defined by Equation 15 and represents the 

Complementary Cumulative Gaussian distribution function of Sa conditioned on Mw, Rrup when 

no pulse-like ground motions are considered. Such an attenuation relationship could be derived 

by excluding pulse-like ground motion from the database. Although no such relationship has 

been derived to date, such a relationship could be approximated by considering the Somerville et 
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al. (1997) model for backward directivity. Equation 18 is solved through a discretization similar 

to that described by Equation 14. Such discretization is omitted herein for brevity. 

Near source scenarios when Forward-Directivity pulses are not 

Dominant [λEDP,NS&Pulse, pulse not dominant(x)] 

As it was previously discussed, whenever the forward-directivity pulse is within a certain 

interval that contains the predominant period of the structure, then the structural response is 

controlled by the forward-directivity pulse. Assuming a log-normal distribution for the period of 

the velocity pulse, the probability that the forward-directivity pulse is within a certain range of 

the structural period is given by: 

Pwithin(T1| Tp,σTp) = F(ln(Tupper) | ln(Tp),σTp) – F(ln(Tlower) | ln(Tp),σTp)       (19) 

where T1 is the predominant period of the structure, Tp and σTp are the mean value and standard 

deviation of the pulse period which in turn are function of earthquake magnitude (Equation 6). 

Tupper and Tlower define the upper and lower period bounds where the structural response is 

controlled by the forward-directivity pulse. Such ranges were deemed to be equal to Tupper = 2.5 

T1 and Tlower = 0.5 T1 for the MDOF structure analyzed herein. 

The method of determining the mean annual frequency of exceedance of an EDP when 

forward-directivity pulses are not dominant is similar to Equation 2. The sole modification is that 

Sa(T1) is defined only for those near-source scenarios with pulses that are outside the pulse 

period range defined above. For these cases, the hazard curve is given by: 
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Note that in this section the Complementary Cumulative Gaussian distribution function of Sa 

(GSa|M,Rrup,Pulse) should be computed from an attenuation relationship that considers pulse-like 

ground motions, such as the broadband directivity model of Somerville et al. (1997). Equation 21 
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is solved through a discretization similar to that described by Equation 14. Such discretization is 

omitted herein for brevity. 

Near source scenarios when Forward-Directivity pulses are 

Dominant [λEDP,NS&Pulse,pulse dominant(x)] 

The treatment of near source scenarios (e.g. rrup < 60 km) when the directivity pulses are 

dominant (e.g. Tlower < Tp < Tupper) differs from the treatment of other sources in hazard. Rather 

than using Equation 2 to compute the EDP risk curve, each possible scenario is considered along 

with the probability of occurrence of that scenario. For each scenario, the EDP is interpolated 

from Figure 4. 

For simplicity, λEDP,NS&Pulse, pulse dominant(x) is defined through a discrete form of the hazard 

integral rather than its integral form. In schematic form, it is given as: 

( ) ( ) ( ) ( )( )∑ ⋅⋅⋅⋅=
scenarios all

ppscenarioNSpwithinscenarioantPulsedomin&NSEDP,  x- A,TEDPHITIP pulserup Prx νλ
 (21) 

Where Iwithin(.) is a flag that is equal to one when Tp falls within the interval [Tlower, Tupper] and 

zero otherwise, INS(.) is a flag that is equal to 1 when rrup < 60 km and zero otherwise, H is the 

Heaviside step function (H(x) = 0 for x < 0, and H(x) = 1 for x≥0), and Ppulse is given by Iervolino 

and Cornell (2008). The functions Iwithin(.), and INS(.) are included in the summation to eliminate 

all scenarios that do not qualify as near-source scenarios with pulse period in the range where the 

pulse period is dominant. Each scenario is weighted by the probability of that scenario taking 

place (discussed below), and the probability of that scenario having a pulse ),,|( θSrpulseP rup . 

Finally, the function H(.) ensures that only the scenarios that contribute to the hazard (e.g. where 

EDP > x) are considered for λEDP,NS&Pulse,pulse dominant(x). EDPscenario(Tp, Ap) is the EDP computed 

from time-domain analyses for a given pulse period and pulse amplitude using the Gabor pulse 

as the equivalent pulse representations (Figure 4) 

The summation over all possible scenarios implies a multiple summation over all possible 

realizations of the predictive variables, namely magnitude (Mw), rupture length (RL), rupture 

location (Χ), hypocenter location (H), pulse period (Tp), and pulse amplitude (Ap). Each of these 

variables is discretized into bins. The probability of an individual scenario is given by: 
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Pscenario = PM(mw) PRL(rl|mw) PΧ(χ|rl) PH(h) PTp(tp|mw) PAp(ap|mw,rrup)  (22) 

where the lower case variables represent the center point of each corresponding bin (the 

summation indices are omitted for clarity). The discrete probabilities P are computed using the 

continuous definitions given earlier. Note that pulse period and pulse amplitude are assumed to 

be independent, log normally distributed random variables. Their mutual independence is crucial 

for the validity of Equation 22. The rupture length is assumed to be uniformly distributed along 

the fault and the location of the hypocenter is assumed to uniformly distributed along the rupture 

length. 

Numerical Implementation of the proposed PSDA analysis 

Details on the numerical implementation of the proposed PSDA analyses are discussed in 

Sehhati (2008). Only a summary of important points is included herein for completeness. A 

schematic flow chart is presented in Figure 5. Note that the implementation was described for a 

single fault. For multiple faults, hazard is computed for each fault individually and then it is 

added to compute the overall hazard. All the probability distributions used in the implementation 

are bounded at ±3 standard deviations. The probability density functions are renormalized such 

that they satisfy all necessary conditions. 

Equation 2 requires the definition of dλSa. dλSa can be approximated by discretizing Sa into 

bins and taking dλSa = λSa,i – λSa,i-1 where i is a summation counter for a discrete version of 

Equation 2. This approach, however, is not practical because it forces the use of identical bin 

sizes in the PSHA analysis and the PSDA analyses. Alternatively, each of the resulting hazard 

curves for Sa can be interpolated using a piece-wise polynomial (e.g. cubic spline interpolation) 

and the derivatives can be found analytically. Hence, Equation 2 can then be expressed as: 

∑ Δ=′≥=
i

iiSaiEDP SaSaSaSaxEDPPx |)(|]|[)( λλ     (23) 

Where λ’Sa(Sa=Sai) is the derivative of λSa obtained analytical from the piece-wise polynomial 

interpolation of λSa at Sa=Sai, and ΔSai is the bin size for Sa. 
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The heaviest computational cost of the proposed method lies in the definition of the response 

surface EDP (Tp, Ap). Note that because of the short duration of the equivalent pulses, the 

computational cost for defining the response surface is not nearly as significant as it would be for 

recorded ground motions. Moreover, structural reliability methods could be used to define the 

response surface in probabilistic terms (e.g. P(EDP>x|Tp, Ap), in which case variations due to 

structural response (in addition to those due to input motion variability which are considered in 

this study) can be also included in the analyses. 

Results 

To illustrate the methodology presented in this work, a PSDA analysis is conducted for the 7-

story structure previously described. The structure is located at various distances from an 

arbitrary fault. The structure is assumed to be on rock. In this example, only the fault normal 

component is considered, and it is assumed that the weak axis of the building is oriented in the 

fault normal direction. The Maximum Inter-story Ductility Demand (MIDD) is selected as the 

EDP for the analysis based on considerations discussed above.  

Fault and Site Information 

A 240 km vertical strike-slip fault was considered as the single seismic source. An arbitrary 

coordinate system as shown in the figure was assigned. A truncated exponential model was used 

to define the probability density function for magnitude. A seismicity rate of 1 was used for 

simplicity and a minimum magnitude of Mw = 5.0 was considered, assuming that lower 

magnitude earthquake do not contribute to hazard. Rupture lengths corresponding to each 

magnitude were estimated based on Wells and Coppersmith (1994): 

wMRLD 62.057.2)log( +−=  with 15.0=σ    (26) 

where RLD is the mean value of the rupture length and σ is the standard deviation in log units for 

the rupture length. The rupture length is assumed to follow a log normal distribution. The fault 

was assumed to be a linear source and its depth was neglected which assumes that the fault has a 

uniform probability of rupture along its depth and length. Shear velocity of the rock (Vs) was 
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assumed as 760 m/sec. Depth to VS=1.0 km/s at the site (defined as Z1 in Abrahamson and Silva 

NGA) was taken as 23.5 m.  

Locations at various distances from the fault were considered in order to study the effect of 

forward-directivity based on source-site distance. For comparison purposes, PSDA analysis that 

do not include directivity and other analyses that include directivity with traditional approaches 

were also conducted, Hence, hazard for each location was calculated using four separate 

methodologies: A PSDA analysis that does not include forward directivity (henceforth called 

Traditional-PSDA); a PSDA model that includes forward directivity through the broadband 

model of Somerville et al. (1997), henceforth called Broadband-PSDA; the same model but 

modified such that the EDP for pulse scenarios is computed by Equation 4 (henceforth called 

Enhanced-Broadband-PSDA), and the proposed time-domain PSDA, henceforth called New-

PSDA.  

Results 

The PSDA analyses were conducted for three points along the centerline of the fault and at 

varying distances from the fault (6 km, 11 km, and 21 km from the fault). Results are shown in 

Figure 6. As expected, the PSDA analysis that does not account for forward-directivity effects 

underestimates the hazard in near-fault zone compared to the other PSDA models. The maximum 

difference between hazard predicted from the aforementioned methods occurs for sites close to 

the fault and reduces as the distance from the fault increases or as the hazard level decreases 

(shorter return period). Results from PSDA analysis without directivity converge to those 

including directivity at distances from the fault greater than about 20 km. 

Note that the inclusion of directivity using the proposed approach results, in general, in higher 

hazard than that obtained from the Broadband-PSDA model and the Enhanced-Broadband-

PSDA, the latter being closer to the results of the proposed model. Recall that both the 

Enhanced-Broadband-PSDA and the New-PSDA models consider the special response of the 

structure to pulse-like motions, the Enhanced-Broadband-PSDA does it through separate 

relationships between EDP and Sa(T1) for pulse- and non-pulse-like ground motions, while the 

New-PSDA does it through time-domain analyses. Time domain analyses capture a more “fine-

tuned” structural response and as a result predict higher hazard for nearly all scenarios. 
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In Figure 6, the contributions to hazard to the Enhanced-Broadband-PSDA model are divided 

into the hazard due to pulse motions (BB-Pulse) and hazard due to non-pulse motions (BB-No 

Pulse). Observe how at low return periods, the hazard is controlled by non-pulse motions while 

the reverse is true for long return periods. This occurs because the likelihood of occurrence of 

pulse-scenarios is very low hence at low return periods there is a minimal contribution to hazard 

by these scenarios. On the other hand, at long return periods, non-pulse scenarios cannot 

contribute significantly to hazard because of the low probability that such scenarios can generate 

large MIDDs. Similarly, the hazard predicted by the New-PSDA model is summation of near-

source scenarios with dominant pulses (NS-P-in), near-source scenarios with pulses but where 

the pulse does not control the response of the structure (NS-P-out), near-source scenarios without 

pulses (NS-NP) and non near-source scenarios (Non-NS). As expected, the Non-NS scenario 

does not contribute to hazard for any of the distances considered. Similarly near-source pulse 

scenarios that are outside the range where the pulse is dominant contribute little to hazard. This 

is because these scenarios have a very low probability of occurring (for example, for a site at 11 

km from the fault, the probability of a near-source scenario with pulses is only 0.4%, and of 

those only 0.21% are scenarios with pulses outside of the range where the pulse is dominant). At 

low return periods, most of the hazard results from non-pulse scenarios (which contribute nearly 

99.5% of all possible scenarios), and the pulse scenarios that are in the range where pulses are 

dominant. Those scenarios, while constituting only (on average) 0.2% of all possible scenarios, 

contribute significantly to hazard because time-domain analyses do predict large EDPs for these 

scenarios. 

Figure 7 shows the magnitude-distance deaggregation of hazard for some of the cases 

considered in Figure 6. Several interesting observations with significant relevance to hazard 

analysis can be inferred from the deaggregation plots. For close distances to the fault (Figure 6a), 

the proposed model predicts an increase in the contribution to hazard from small magnitude 

earthquakes. This difference is due to the ability of the time-domain analyses to capture the large 

EDPs that result from resonance when the pulse period matches the structural period. When 

forward-directivity is included through a broad-band model the effect of the pulse-type motions 

on the response spectra is smeared over a broad period band and the particular resonance that 

develops with pulse-type motions is not captured. For example, the contribution for a 
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Magnitude-Distance bin centered at 6 km (Figure 7a) increases from 4.1% to 10.3% when 

considering time domain analyses (the comparison is with the enhanced broadband model that 

considers pulse motions through Sa(T1)). Equally important, the contribution of more distant 

earthquake increases significantly. For example, the time domain PSDA predicts a small 

contribution to hazard of low magnitude earthquakes for distances up to 15 km (up to 5% 

contribution to hazard), while the enhanced broadband model predicts no contribution to hazard 

for distances higher than 6 km. The same pattern (e.g. increase in the contribution to hazard of 

small earthquakes) persists even for distances of 21 km from the fault (Figure 7b) but is not 

present at larger distances. 

Figure 8 plots the magnitude-distance deaggregation of the New-PSDA model separated into 

the contributions of near-source and far-source events, those with and without pulses, and those 

with pulses that control structural response. Magnitude and pulse-period deaggregation results 

show that as site-source distance increases, higher magnitudes contribute proportionally more to 

hazard. This is a results of a diminishing contribution of the pulse-controlled hazard (NS_P_in in 

Figure 8). Note that the contribution of near-source motions with dominant pulses (NS-P-in) 

dominates the contribution of small to intermediate magnitude earthquakes. This makes sense 

when one considers that a Mw 5.75 earthquake generates a pulse with a period of 1.1 sec, which 

is close to the period of the structure (1.0 sec). This confirms previous speculation that smaller 

magnitude earthquakes can contribute more to hazard than large magnitude earthquakes 

(Somerville 2003). 

These observations have significant relevance for the design of structures in near-fault 

regions, as they indicate the importance of considering the near-source pulses for smaller 

magnitude earthquakes. For these cases, it is necessary to consider pulse-like motions in 

evaluating hazards. Hence, a deaggregation of pulse period and pulse amplitude can guide the 

selection of design ground motions. Figure 9 shows a deaggregation of pulse-period and pulse-

amplitude for site-to-fault distances of 6 km and 21 km. This plot can be used directly to select 

simplified pulses that contribute the most to hazard. For example, it is obvious that pulse periods 

between 0.75 sec and 1.5 sec control design for a structure at 6 km from the fault, and the 

dominant pulse amplitude is centered around 30 cm/sec. Simplified pulses with these 

characteristics can be selected for the design of this particular structure. Observe that for larger 
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fault-to-site distances, the relative contribution of closer distances increases, but the dominant 

period remains centered around the period of the structure. 

Figure 10 shows contours of the percentage difference in hazard predicted by a model without 

forward directivity and the broadband model that incorporates a separate measure for pulse-like 

motions (enhanced broadband model). Observe that the hazard increases by about 30% for 

regions close to the fault. this differences decreases to zero at about 25 km. In general, the hazard 

predicted by the proposed model is highest near the center and the edges of the fault. Figure 11 is 

similar to Figure 10, except that the hazard of the proposed model is compared to a model 

without forward directivity. In this case, the hazard increases by 60% for regions close to the 

fault. This increase diminishes to zero at a distance of about 25 km from the fault. This figures 

highlight the importance of considering forward directivity in hazard analysis, and the 

improvement in hazard characterization when the proposed model is used. 

Conclusions and Recommendations 

Hazard computations with the proposed methodology results in higher computed hazard for 

MIDD for the selected structures for sites located near to the fault. This increase results from the 

different treatment of pulse-like motions: whereas existing methodologies consider near-fault 

hazard through average increase in response spectral estimates, the proposed methodology 

captures its narrowband nature. Moreover, by performing structural analyses for each realization 

of the pulse-type motions, the resonant nature of the structural response to pulse-like motions is 

captured and introduced into the hazard computation. 

Analysis with the proposed methodology indicated that near-source structures with structural 

periods close to about 1.0 seconds can be affected by smaller magnitude earthquakes that 

generate ground motion pulses with periods close to the structural period. Traditional, spectral 

acceleration-based PSDA analysis do not capture this effect and underestimate the contribution 

to hazard from small magnitude earthquakes and can lead to errors in ground motion selection 

for design. 

Although the example selected in this report corresponds to an idealized MDOF structure and 

an idealized fault, both the fault model and the structural model were selected to represent 

realistic conditions and the results shown would very likely be reproduced for actual structures 
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located near active faults. Therefore, it is recommended that the proposed methodology be used 

for the design of transportation infrastructure located near faults, in particular for infrastructure 

whose failure can result in significant disturbance of road networks immediately after an 

earthquake. The proposed methodology not only computes a more adequate hazard from existing 

faults, but also provides, through pulse-period and pulse-amplitude disaggregation, a tool for 

selecting ground motions for design of such structures. 

Recommendations for further study 

Recommendations for further study are discussed below. Some of these recommendations 

were part of proposed tasks from the proposal presented to Transnow that resulted in the project 

whose results are presented in this work. These tasks were not included because the amount of 

time invested in the development of the proposed methodology had been underestimated.  

• Some of the components of the model presented herein have not yet been fully 

developed. For example, the computation of near-fault hazard for non-pulse-type 

motions should be performed using a complete ground motion database that excludes 

non-pulse near-source motions. Such a task is beyond the scope of this research, yet it 

can be achieved thanks to the recent compilation of the NGA database. Another 

component that needs to be improved are the predictive models for PGV and pulse 

period. These models, understandably, are poorly constrained by existing data. 

Additional constraints from modeling or possibly with data collected from future 

earthquakes are necessary to generate more robust models.  

• The model presented herein should be applied to actual transportation structures 

located near actual faults. Such a structural model has been previously developed at 

Washington State University (Bonvalot 2006) for two bridges located near the Seattle 

fault, and was enhanced through the work performed in this project. A characterization 

of the Seattle fault is summarized by Gillie (2006). This task had originally been 

proposed for this research but time constrained prevented its realization. 

• The proposed model can be easily applied to geotechnical structures such as retaining 

walls or man-made slopes. Such structures can also be affected by the same resonance 

phenomenon that leads to high structural response to pulse-like ground motions. This 



 29

task had originally been proposed for this research but time constrained prevented its 

realization. 

• The analyses presented herein assumed that the structure is has a weak axis aligned 

with the fault normal direction. While theory predicts that forward-directivity pulses 

are aligned with the fault normal direction, actual recordings indicated that the 

orientation of these pulses is a random variable. This variability should be considered 

when making estimates of hazard to structures. 
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Figure 1. Predictive model for Maximum Interstory Ductility Demand (MIDD) as a function 

of spectral acceleration at the first mode period of the structure. On the left is the mode 

(Equations 3 and 4). On the right, the residuals (MIDD for each record minus the predictive 

MIDD for the Sa(T1) of each record) and the model for standard deviation (Equation 3b). 
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Figure 2: Gabor wavelet pulses with parameters A = 20 cm/sec, fp = 1 Hz, and to = 2.5 sec. 
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Figure 3: Transition from PGV estimated by Bray and Rodriguez-Marek (2004) to PGV 

estimated by Abrahamson and Silva (2007) for distances between 20 and 60 km. 
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Figure 4: Maximum inter-story ductility demand of the 7-story structure for Gabor pulses with 

parameters γ = 3, 15 < A < 60 cm/s, and 0.37 < Tp  < 3.33 s. 
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Figure 5. Implementation flow chart. For details see Sehhati (2008). 
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Figure 6a. Mean annual frequency of exceedance of EDP (λEDP) for sites located along the 
centerline of the fault at 6 and 11 km from the fault. 
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Figure 6b. Mean annual frequency of exceedance of EDP (λEDP) for sites located along the 
centerline of the fault at 16 and 21 km from the fault. 
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Figure 7a. Magnitude-Distance deaggregation for EDP > 5 and for a site along the centerline 

of the fault at 6 km from the fault. The y-axes correspond to the percentage contribution to 

hazard for each of the four different analyses. 
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Figure 7b. Magnitude-Distance deaggregation for EDP > 5 and for a site along the centerline 

of the fault at 21 km from the fault. The y-axes correspond to the percentage contribution to 

hazard for each of the four different analyses. 
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Figure 8a. Magnitude-Distance deaggregation for EDP > 5 and for a site along the centerline of the fault at 6 km from the fault. 

Different deaggregations are shown for different components of hazard of the proposed PSDA model. The title of each figure indicates 

the percentage contribution total hazard. 
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Figure 8b. Magnitude-Distance deaggregation for EDP > 5 and for a site along the centerline of the fault at 21 km from the fault. 

Different deaggregations are shown for different components of hazard of the proposed PSDA model. The title of each figure indicates 

the percentage contribution total hazard.
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b) 

Figure 9. Pulse period and pulse amplitude deaggregation for two sites along the centerline of 

the fault: a) at 6 km and b) at 21 km from the fault. The y axis shows the percentage contribution 
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to hazard only with respect to pulse-like scenarios where the pulse is dominant. These scenarios 

contribute 50% and 23% of total hazard for distances of 6km and 21 km, respectively. 
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Figure 10: Contours variations of λEDP for EDP > 5 predicted by PSDA without forward 

directivity and the Enhanced-Broadband-PSDA. Observe that maximum increase of hazard 

occurs near the center and the edges of the fault. 
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Figure 11. Contours variations of λEDP for EDP > 5 predicted by PSDA without forward 

directivity and the proposed PSDA analysis.  
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Appendix A 

Ground motions used in this study 

Table A1: Earthquakes that recorded the ground motions used in this study. 

Earthquake Date Moment magnitude
Parkfield (PF) 6/27/66 6.1 
San Fernando (SF) 2/9/71 6.6 
Imperial valley (IV) 10/15/79 6.5 
Morgan Hill (MH) 4/24/84 6.2 
Superstition Hills (SH) 11/24/87 6.6 
Loma Prieta (LP) 10/17/89 7 
Erzincan, Turkey (EZ) 3/13/92 6.7 
Landers (L) 6/28/92 7.3 
Northridge (N) 1/17/94 6.7 
Kobe (KB) 1/17/95 6.9 
Kocaeli (K) 8/17/99 7.4 
Chi-Chi (CH) 9/21/99 7.6 
Duzce (D) 11/12/99 7.1 
Palm Springs (PS) 7/8/86 6.0 
Denali(DE) 11/3/02 7.9 
San Simeon (SS) 12/23/03 6.5 
Bam (B) 12/26/03 6.5 
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Table A2: Ground motions with forward-directivity effects (selected from Bray and Rodriguez-Marek (2004)). 

# Station Agency Station 
# Eventa Rb 

(km) Sitec PGA 
(g) 

PGV 
(cm/s) Tv-p 

e(s) (Tp)Baker f 
(s) 

(Ap)Baker 
g

(cm/s) 
1 Gilroy-Gavilan Coll. CDMG 47006 LP 11.6 r 0.32 30.81 0.38 1.80 13.8 
2 Gilroy-Historic Bldg. CDMG 57476 LP 12.7 s 0.29 36.82 1.47 1.80 29.2 
3 Gilroy Array#1 CDMG 47379 LP 11.2 r 0.48 38.61 0.4 4.31 9.4 
4 Gilroy Array#2 CDMG 47380 LP 12.7 s 0.41 45.67 1.46 1.72 40.4 
5 Gilroy Array#3 CDMG 47381 LP 14.4 s 0.54 49.34 0.48 2.32 23.8 
6 LGPC UCSC 16 LP 6.1 r 0.84 103.18 0.79 3.92 62.1 
7 Saratoga-Aloha Ave. CDMG 58065 LP 13.0 s 0.39 55.58 1.55 4.47 26.5 
8 Saratoga-W Valley Coll. CDMG 58235 LP 13.7 s 0.40 71.33 1.14 1.90 37.7 
9 Erzincan   95 EZ 2.0 s 0.50 95.56 2.23 2.65 66.6 
10 Jensen Filtration Plant USGS 655 N 6.2 s 0.40 104.55 2.86 3.36 80.3 
11 Newhall-Fire Sta. CDMG 24279 N 7.1 s 0.77 120.27 0.71 1.04 92.6 
12 Newhall-W. Pico Can. Rd USC 90056 N 7.1 s 0.43 87.75 2.03 2.41 76.0 
27 Pacoima Dam (downstr.) CDMG 24207 N 8.0 r 0.53 51.24 0.44 0.59 35.0 
14 Rinaldi Receiving Sta. DWP 77 N 7.1 s 0.89 173.07 1.06 1.50 111.3 
15 Sylmar-Converter Sta. DWP 74 N 6.2 s 0.61 130.27 1.1 3.48 78.4 
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Table  (Cont.) 

# Station Agency Statio
n # Eventa Rb 

(km) Sitec PGA 
(g) 

PGV 
(cm/s) Tv-p e (s) (Tp)Baker f 

(s) 

(Ap)Baker 
g 

(cm/s) 
16 Sylmar-Converter Sta. E. DWP 75 N 6.1 s 0.85 116.56 2.92 3.49 55.0 
17 Sylmar-Olive View FF CDMG 24514 N 6.4 s 0.77 122.72 2.42 3.11 71.0 
18 Pacoima Kagel Canyon CDMG 24088 N 7.3 r 0.53 56.00 0.88 0.90 43.0 
19 Arleta-Nordhoff Fire Sta. CDMG 24087 N 8.7 s 0.32 35.50 1.49 1.23 23.0 
13 Duzce ERD – K 12.7 s 0.36 46.41 1.37 1.36 46.7 
20 Arcelik Kandilli  – K 17.0 r 0.14 42.35 5.24 7.97 28.4 
21 Gebze ERD – K 17.0 r 0.28 40.69 4.62 5.97 34.0 
22 TCU052h, i CWB – CH 0.2 s 0.53 177.27 4.48 6.12 95.2 
23 TCU068h CWB – CH 1.1 s 0.61 145.13 4.06 4.25 104.9 
24 TCU075i CWB – CH 1.5 s 0.32 76.14 2.03 2.41 61.8 
25 TCU101i CWB – CH 2.9 s 0.21 65.19 8.62 6.86 38.4 
26 TCU102i CWB – CH 1.8 s 0.30 87.07 2.52 9.11 51.7 

a See Table .    
b Closest distance to the fault plane.     
c Soil (s) or rock (r). 
e Period corresponding to the peak in the velocity response spectrum. 
f Pulse period determined with the procedure of Baker (2007). 
g Pulse amplitude determined with the procedure of Baker (2007). 
h The fault normal direction for these records was assumed to be the direction oriented with the largest velocity pulse (N122º for 
TCU052 and N199º for TCU068). 
i The fling step was removed using the procedure described in Bray and Rodriquez-Marek (2004).
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TableA3 Near-fault ground motions included in the non-FD database (e.g. those that do not have pulse-like characteristics). 

# Station Agency Station # Eventa R b (km) Sitec PGA (g) PGV (cm/sec) Tv-p 
d

1 BRAN UCSC 13 LP 10.7 r 0.63 53.34 0.49 
2 Capitola CDMG 47125 LP 15.2 s 0.45 34.56 0.64 
3 Corralitos CDMG 57007 LP 3.9 r 0.51 45.48 0.75 
4 UCSC Lick Observatory CDMG 15 LP 18.4 r 0.47 17.69 0.36 
5 UCSC UCSC 58135 LP 18.5 r 0.46 11.61 0.16 
6 WAHO UCSC 14 LP 17.5 r 0.78 25.42 0.23 
7 N Hollywood – Coldwater Can. USC 90009 N 12.5 r 0.24 22.89 1.2 
8 Sunland – Mt Gleason Ave. USC 90058 N 13.4 r 0.15 19.25 1.04 
9 Burbank – Howard Rd.  90059 N 16.9 r 0.12 8.14 0.64 
10 Simi Valley – Katherine Rd. USC 90055 N 13.4 r 1.07 51.4 0.62 
11 Sun Valley – Roscoe Blvd. USC 90006 N 10.1 s 0.31 25.86 1.01 
12 Santa Susana Ground USGS 5108 N 16.7 r 0.4 20.31 0.69 
13 Big Tujunga, Angeles Nat F USC 90061 N 19.7 r 0.17 6.67 0.64 
14 CHY028 CWB - CH 3.1 s 0.65 72.86 0.62 
15 CHY029 CWB - CH 11.0 s 0.3 30.35 0.67 
16 CHY035 CWB - CH 12.7 s 0.25 45.61 1.28 
17 CHY080 CWB - CH 2.7 s 0.97 107.61 0.88 
18 CHY006 CWB - CH 9.8 s 0.36 55.44 1.81 
19 TCU055 CWB - CH 6.4 s 0.24 26.23 2.15 
20 TCU070 CWB - CH 19.0 s 0.26 52.16 5.1 
21 TCU071 CWB - CH 5.3 s 0.58 44.52 0.56 
22 TCU072 CWB - CH 7.0 s 0.53 71.8 0.88 
23 TCU074 CWB - CH 13.5 s 0.64 73.4 1.47 
24 TCU079 CWB - CH 11.0 s 0.76 61.24 0.6 
25 TCU089 CWB - CH 8.9 s 0.34 30.93 5.42 
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# Station Agency Station # Eventa R b (km) Sitec PGA (g) PGV (cm/sec) Tv-p 
d

26 Bolu ERD - D 17.6 s 0.81 56.51 0.79 
27 Duzce ERD - D 8.2 s 0.36 59.99 5.50 
a See Table .      
b Closest distance to the fault plane. 
c Soil (s) or rock (r). 
d

 Period corresponding to the peak in the velocity response spectrum. 

 


